miRNA的功能及其作用機制 - 知乎首發(fā)于非編碼RNA切換模式寫文章登錄/注冊miRNA的功能及其作用機制Ai科研繪圖-有課?miRNA的功能miRNA的作用機制1、RNA誘導(dǎo)沉默復(fù)合體(RISC)的形成1.2、miRNA誘導(dǎo)的基因沉默模式及其相關(guān)機制miRNA的功能很多研究證明 miRNA是通過參與調(diào)節(jié)其下游基因翻譯過程面發(fā)揮其生物學(xué)功能。比如,Lai等觀察到果蠅miR-2a、miR-2b、miR-6、miR-11、miR-13a及miR-13b等的5'端6~8nt序列具有一定的關(guān)聯(lián)性,它們均可與K框(Kbor)的相同序列互補K框是作為負調(diào)控果蠅增強子斷裂( enhancer split)復(fù)合體基因的3'UTR序列中的保守基因序列。對于一些帶有K、GY或Brd框的基因(GY和Brd框是類似于K框的其他基因3'UTR中的控制元件),可以被 miRNA識別并與之堿基配對。其實,基于 MIRNA作用機制,可將其分成兩個區(qū)域,其5'端的核苷酸代表了“姓”( family)區(qū)域,該區(qū)域匹配這些框中的一個,而其他的區(qū)域類似“名”( forename),特異白匹配特定的靶,在動物中,單個mRNA可識別多個mRNA靶標(biāo),一個mRNA靶標(biāo)可被多個 miRNA識別。根據(jù)miRNA保守的5'端“種子”順序同源性搜索分析,推測人類基因組中約三分之二的蛋白質(zhì)編碼基因受 miRNA的調(diào)控。已知所有動物 miRNA作用的mRNA靶點均在其3'UTR。miRNA的作用機制 miRNA對靶基因的作用機制一直是眾多研究人員的關(guān)注熱點。最早被發(fā)現(xiàn)的兩個miRNA ——lin4和let-7被認為是通過不完全互補結(jié)合到基因mRNA 3' UTR,以一種未知的方式抑制蛋白質(zhì)翻譯,進而抑制蛋白質(zhì)合成,阻斷mRNA的翻譯過程。后來的研究也發(fā)現(xiàn),多個果蠅 miRNA和它們的基因mRNA的 3' UTR 存在部分同源。但由于 miRNA與其目標(biāo)靶之間的互補是不完全的,用生物信息學(xué)的方法鑒定 miRNA的目標(biāo)位點并非易事。在植物中,由于 miRNA與潛在的基因是完全互補的,使得植物的miRNA預(yù)測相對較容易。但這些預(yù)測基因是否就是 miRNA的靶基因,還需要作進一步驗證。 研究表明, miRNA基因是一類高度保守的基因家族,按其與基因的作用模式不同,主要可分為以下3種類型:①作用時與靶標(biāo)基因完全互補結(jié)合,作用方式和功能與 siRNA非常類似,最后切割mRNA,常見于植物。②作用時與靶標(biāo)基因不完全互補結(jié)合,進而阻止翻譯而不影響mRNA的穩(wěn)定性,這是目前發(fā)現(xiàn)最多的作用模式,常見于動物。(如下圖)(圖一)③具有以上兩種作用模式,當(dāng)與標(biāo)基因完全互補結(jié)合時,直接向切割mRNA,當(dāng)與標(biāo)基因不完全互補結(jié)合時,阻止基因翻譯。(如上圖) miRNA對基因的調(diào)控,正如前文所述(一文讀懂miRNA的生物合成), Pre-miRNA由 exportin-5輸出至胞漿中,然后釋放 Pre-miRNA. Pre-miRNA與Dicer互補結(jié)合,產(chǎn)生長度為22nt的不完全配對的雙鏈RNA。最后,雙鏈中只有一條單鏈與RNA誘導(dǎo)的RISC結(jié)合,隨后與把mRNA互補。而 miRNA*釋放后則被降解。對于 miRNA來說,發(fā)揮對靶基因的調(diào)控作用, Dicer和RISC是必不可少的。因為 Dicer是產(chǎn)生 miRNA不可或缺的,而RISC則是 miRNA實現(xiàn)功能的載體。1、RNA誘導(dǎo)沉默復(fù)合體(RISC)的形成 2001年, Elbashir等在《基因發(fā)育》雜志( Genes Devolopment)發(fā)表一篇文章,介紹了在果蠅體外系統(tǒng)中加入合成21~23nt的 siRNA,使之能有效降解同源mRNA他們發(fā)現(xiàn)當(dāng)siRNA濃度增加到一定閾值時,mRNA降解程度不再繼續(xù)增加,提示在果蠅裂解液中含有一定數(shù)量RNAi所需蛋白因子。這些RNAi所需蛋白因子是一種復(fù)合物,被定義為RNA誘導(dǎo)的沉默復(fù)合體(RISC)。研究發(fā)現(xiàn),RISC是一種核糖核蛋白,主要由RNA和蛋白質(zhì)成分組成。其中的RNA即是siRNA,而蛋白質(zhì)成分主要為AGO22、VIG、dFXR以及Dmp68等,并且,這些蛋白質(zhì)成分是組成RISC所必須的,并參與RNAi過程。 miRNA介導(dǎo)的RISC簡稱為 miRISC( miRNA-containing RNA induced silencing coplex),也被稱作miRNA核糖核蛋白復(fù)合體( miRNP)。miRISC復(fù)合體除了包括成熟 miRNA外,還包含Dicer蛋白和多種其他相關(guān)蛋白。其與RISC結(jié)合的原理與siRNA類似,通過miRNA: miRNA*雙體兩端熱力學(xué)穩(wěn)定性的分析,可以分為兩類結(jié)合:優(yōu)勢結(jié)合與等勢結(jié)合。以 dsRNA為例,當(dāng)雙鏈中兩根支鏈的穩(wěn)定性相似或相同時,它們結(jié)合進入RISC的概率也相似或相同,因此稱為等勢結(jié)合(如圖一所示)。當(dāng)雙鏈中支鏈的穩(wěn)定性相對較弱時,解旋會從穩(wěn)定性弱的一支解開dsRNA,從而會偏向性地產(chǎn)生一條結(jié)合到RISC復(fù)合體上,這類結(jié)合稱為優(yōu)勢結(jié)合,未進入RISC的互補鏈RNA會很快降解(如圖二所示)。(圖二) RISC是 miRNA參與靶基因調(diào)控過程中不可或缺的載體。在 miRISC復(fù)合體中, Dicer對Pre-miRNA的處理與雙鏈螺旋的解旋是偶聯(lián)進行的。通常,只有一條鏈進入 miRISC,具體選擇雙鏈中哪一條鏈取決于堿基熱動力學(xué)穩(wěn)定性等因素。不進入RISC的 miRNA鏈被稱之為伴隨鏈( passenger),并被冠以星號(*),具有更低的穩(wěn)定性,通常情況下被降解掉。但在某些情況下,兩條鏈均具有活性,成為針對不同靶基因mRNA的功能 miRNA。RISC是具有多輪催化效應(yīng)的酶。在這一過程中,其核心組分Ago2發(fā)揮重要作用。因此,在組成 miRISC的蛋白質(zhì)中,Ago蛋白家族成員在RISC功能中處于中心地位,Ago蛋白家族在哺乳動物中有8種,分為Ago和PIWI兩個亞家族。人Ago亞家族有四種: hagol-4;PIW亞家族有HIWI、HILI、 PIWIL3、HIWI2四種。果蠅有兩種Ago蛋白,分別是Agol和Ago2。(圖三) Ago家族蛋白為一類分子質(zhì)量約為100kD的蛋白質(zhì),屬于進化保守的家族,包含有PAZ和Piwi兩個保守的RNA結(jié)合結(jié)構(gòu)域,是目前唯一一種在所有RNAi和 miRNA通路中均可發(fā)現(xiàn)的蛋白。PAZ結(jié)構(gòu)域負責(zé)結(jié)合引導(dǎo)鏈( guide) miRNA的3' 端突出的2個核苷酸或者單鏈RNA的3'-OH;PIWI結(jié)構(gòu)域則負責(zé)組裝核酶H( ribonuclease- H),并與 miRNA 5'端結(jié)合。Ago蛋白與 miRNA結(jié)合使其朝向正確,以便與靶基因mRNA作用。Ago蛋白可能招募其他蛋白行使翻譯抑制功能;一些Ago蛋白直接切割靶轉(zhuǎn)錄本。(如圖三所示) Ago家族有不同的突變種和表型。研究發(fā)現(xiàn),秀麗線蟲有24個Ago蛋白,果蠅中有5個Ago蛋白,乳動物有8個同源蛋白Ago蛋白,所以RISC會呈現(xiàn)不同類型或者調(diào)控方式。根據(jù)Ago的不同,可以將RISC分為切割RISC與非切割RISC兩類。對于一個特定的RISC是否切割一個mRNA分子,主要取決于以下幾個方面:目標(biāo)mRNA的特性(主要包括分子結(jié)構(gòu)及數(shù)量等);RISC的類型必須為切割RISC;組織中,RISC的切割速度;miRNA與靶基因必須滿足一定的匹配程度;miRNA的來源。 在人基因組中含有的8個AgO蛋白中,有4個成員存在于所有乳動物細胞中,在人類這類蛋白稱為E1F2C/ hAgo;PIWI存在于精細胞和細胞中,RISC的其他組成分還包括人類免疫缺陷病毒活化反應(yīng)RNA結(jié)合蛋( human immunodeficiency virus tran activating response RNA binding protein,TRBP),干擾素誘導(dǎo)的蛋白激酶活化因子(wro rein activator of the interferon induced protein kinase,PACT),運動神經(jīng)元存活復(fù)合體( survival of motor neurons complex),脆性X智障蛋白( fragile X mental retardation protin,F(xiàn)MRP)和 Tudor葡萄球菌核酸酶結(jié)構(gòu)域包含蛋白( Tudor staphylococcal nuclease domain contining protein) 等。RISC的結(jié)構(gòu)特征主要包含以下幾個方面:(1)成熟的 miRNA與RISC結(jié)合。RISC含Dicr及其他蛋白質(zhì)。RISC又稱 miRNP,和 miRNA結(jié)合的RISC稱為“ miRISC"。(2) Dicer 加工pre-miRNA與RNA雙鏈解旋偶聯(lián),解旋的 miRNA只有一條單鏈保留在RISC中。(3) argonaute(Ago)是RISC的核心成分,為 miRNA誘導(dǎo)的基因沉默所必需。Ago含有兩個RNA結(jié)合域:PAZ,與成熟 MIRNA的3' 端結(jié)合;PIWI,類似核糖核酸酶-H,和引導(dǎo)鏈5'端結(jié)合。兩者共同將成熟 miRNA定向,使其和靶mRNA互補。(如圖四所示)(圖2、miRNA誘導(dǎo)的基因沉默模式及其相關(guān)機制 miRNA靶向互補 mRNAs導(dǎo)致目的mRNA切降解的過程被稱為轉(zhuǎn)錄后基因沉默(ot ranscriptional gene silencing,PTGS)。有效的PTGS需要RISC對mRNA轉(zhuǎn)錄本的切割 。 miRNA可以指導(dǎo)RISC在轉(zhuǎn)錄后水平下調(diào)基因的表達——mRNA的降解或翻譯抑制。采取何種沉默方式是由mRNA的特性所決定的。如果mRNA能夠與miRNA完全互補,該mRNA就會被RISC特異地降解;如果mRNA不能與 miRNA完全互補,僅在某個位點與 miRNA互補,那么RISC就不會特異地降解mRNA,只是阻止mRNA作為翻譯的模板,使之不能合成蛋白質(zhì)。在動物中,多數(shù)情況下復(fù)合物中的單鏈 miRNA與mRNA的 3' UTR不完全互補配對,從而阻礙對該mRNA的翻譯,并以此來調(diào)控基因表達,但不影響mRNA的穩(wěn)定性。如線蟲中的 miRNA lin-4就是以這種方式調(diào)控它的兩個靶基因——lin-14和lin-28的翻譯。另一種主要的作用方式則與 siRNA誘導(dǎo)的轉(zhuǎn)錄后基因沉默的PTGS相類似,當(dāng) miRNA與mRNA完全互補配對時,Ago2蛋白可通過對mRNA的切割直接導(dǎo)致其降解,完成基因沉默調(diào)控。 此外, miRNA誘導(dǎo)的基因沉默還存在一些其他的方式,如 miRNA還能通過組氨酸修飾和啟動子區(qū)的DNA甲基化影響基因的表達;miRNA與 5' UTR相互作用然后上調(diào)基因表達,由胞漿轉(zhuǎn)運入核,以及近些年來發(fā)現(xiàn)的 miRNA能加速mRNA脫腺苷酸化( accelerated deadenylation)而抑制基因表達等多種作用模式。miRNA誘導(dǎo)基因沉默的機制可以歸納為以下兩個主要方面:(1) miRNA的翻譯起始抑制與翻譯起始后抑制 miRNA對翻譯起始抑制的相關(guān)機制主要有如下一些觀點:首先, miRNA可通過抑制核糖體的組裝來阻斷翻譯起始,進而起到對翻譯過程的抑制作用。miRNA的抑制作用需要靶mRNA具有m7G帽子結(jié)構(gòu)成為支持這一理論的重要依據(jù),由此可以推斷 miRISC可能通過對翻譯起始復(fù)合物形成抑制而發(fā)揮作用;Ago2中間結(jié)構(gòu)域具有結(jié)合m7G帽子的活性,Ago2通過 對miRNA招募靶mRNA的 3' UTR,從而與起始復(fù)合物eIF4E/G競爭性結(jié)合m7G帽子,最終發(fā)揮對翻譯起始復(fù)合物的抑制作用。還有一些觀點認為,通過影響靶mRNA脫腺嘌呤反應(yīng),導(dǎo)致其 polyA尾縮短,從而使mRNA與 polyA結(jié)合蛋白( polya binding protein,PABP)受阻,進而影響蛋白質(zhì)翻譯的起始。 研究還表明,一些被 miRNA作用后的mRNA可以與多核糖體偶聯(lián),這些核糖體在翻譯中處于非常活躍的狀態(tài)。此外, miRNA的抑制作用還可能發(fā)生在翻譯起始之后,這主要是由于其翻譯過程的抑制作用是通過內(nèi)部核糖體進入位點( internal ribosome entry site,IRES)什么是IRES,而不是依賴 MRNA m7G帽子來發(fā)揮作用。其他作用方式,比如對新生多肽鏈的翻譯同步降解等目前還沒有定論,有待進一步證實。(2) miRNA介導(dǎo)的mRNA衰減(降解) miRNA可誘導(dǎo)與其不完全配對的犯mRNA衰減(降解)。通過Ago蛋白定位于如P小體( processing bodies,P- bodies)等的RNA顆粒( RNA granules)中,這些顆粒中包含有mRNA降解的酶。這也可能是 miRNA介導(dǎo)mRNA衰減的一個重要途徑。 發(fā)布于 2021-09-04 23:51miRNA分子生物學(xué)基因組?贊同 147??7 條評論?分享?喜歡?收藏?申請轉(zhuǎn)載?文章被以下專欄收錄非編碼
一文秒懂microRNA - 知乎首發(fā)于解螺旋切換模式寫文章登錄/注冊一文秒懂microRNA酸菜?科研等 2 個話題下的優(yōu)秀答主本文首發(fā)于“解螺旋”微信公眾號轉(zhuǎn)載請注明:解螺旋·臨床醫(yī)生科研成長平臺酸菜今天可是有點大跌眼鏡,以科普著稱的某殼網(wǎng)竟然也聊起了“micro RNA”,這一只在生物學(xué)界才被熟知的名詞,已經(jīng)“熱”到日常生活了么?老貓同志說的沒錯,雖然科學(xué)家們發(fā)現(xiàn)了很多microRNA與某些重要的生理、生化進程或疾病直接相關(guān),但是大部分的應(yīng)用目前還停留在實驗室或者初級臨床的層級里。畢竟microRNA的研究至今只有20多年的歷史,人類對于它的了解還不成熟。就連這個科班出身的,上學(xué)時也只知道m(xù)RNA,tRNA和rRNA,做了科研后才知道,原來還有MiRNA、SiRNA、LncRNA、PiwiRNA、CeRNA……不過,如果你是醫(yī)院的小伙伴們,如果還沒有搞懂MicroRNA,那你可就真的要OUT了。酸菜今天興致來了,也來為MicroRNA科普一把!絕壁比某網(wǎng)接地氣的,有木有?MicroRNA (miRNA) 是一類由內(nèi)源基因編碼的長度約為22 nt的非編碼單鏈RNA 分子,它們在動植物中參與轉(zhuǎn)錄后基因表達調(diào)控。過于教條,過于高大上?往簡單地講,Micro RNA就是一條不會翻譯蛋白的小RNA。為什么是22nt,而不是22bp?(nt是核苷酸,bp是堿基對)Micro RNA是用nt作為單位的,說明了miRNA是單鏈的。我們在文獻里miRNA名字有沒有覺得很奇怪?有has、3p、5p,有的后面還帶*號,還有的有a有b,有的a、b后面跟個-1、-2……完全看不懂有沒有?我來給大家解讀一下,如下圖。miRNA就是一條不會翻譯蛋白的小RNA,那么miRNA對人體到底有什么作用?給你舉個例子,你感受一下。普通的mRNA就好比是一條高速公路,路上會有很多會排出尾氣的汽車(核糖體,它們在mRNA上邊走邊翻譯蛋白),一條高速路上會有很多輛車(多聚核糖體Polysome),車越多、開得越快,尾氣就越大(蛋白表達量就越高),這個時候,在路快到盡頭的地方(mRNA的3’UTR上)就出現(xiàn)了一個交警(MiRNA聚合一些蛋白的RISC,RNA-Induced SilencingComplex,RNA誘導(dǎo)沉默復(fù)合體),他穩(wěn)穩(wěn)地站在路的最后(通過RISC中的MiRNA與3’UTR互補,結(jié)合到mRNA的3’UTR上),整個車隊就停下來了,尾氣也沒了(蛋白表達降低)。好了,現(xiàn)在也明白為什么過表達miRNA之后下游基因的mRNA變化不大,但蛋白會有變化了吧?因為警察是不會拆路的……發(fā)布于 2017-12-12 13:00核糖核酸(RNA)基因科研?贊同 165??10 條評論?分享?喜歡?收藏?申請轉(zhuǎn)載?文章被以下專欄收錄解螺旋關(guān)于醫(yī)學(xué)科研的獨到
醫(yī)學(xué)前沿:非編碼RNA—microRNA - 知乎首發(fā)于基因研究發(fā)展史切換模式寫文章登錄/注冊醫(yī)學(xué)前沿:非編碼RNA—microRNA啟領(lǐng)生物在2019年國家自然科學(xué)基金資助項目中,以非編碼RNA為研究主線的miRNA/IncRNA/CircRNA/CeRNA占中標(biāo)總數(shù)的5成以上!▲RNA項目中標(biāo)數(shù)近幾年,涉及到RNA的項目數(shù)連年呈上升趨勢,絲毫沒有“減熱”。預(yù)計2020年,中標(biāo)項目在保持現(xiàn)有的基礎(chǔ)上依舊有上升的可能。今天我們主要講的是是非編碼RNA中“老而彌堅”的熱點—microRNA(miRNA)。注:2019年,涉及到miRNA研究的中標(biāo)項目至少為210項,熱度已維持多年,位居國自然申請熱點榜的“榜首”。隨著研究的不斷深入,單個miRNA已很難滿足評審組,其漸漸淪為工具分子或需多個miRNA“抱團取暖”才可以?!鴼v年自然科學(xué)基金-miRNA中標(biāo)項目數(shù)下面小編將帶大家深度“扒一扒”miRNA,從概念、生成過程、生物學(xué)功能、在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用和miRNA實驗設(shè)計思路進行深入介紹。希望可以為大家的項目申請和實驗設(shè)計提供新的思路。在遺傳學(xué)中,微RNA(microRNAs,miRNA)是一類進化上保守的非編碼小分子RNA,長度一般在21-23個核苷酸之間,具有在翻譯水平調(diào)控基因表達的功能。在脊椎動物基因組中有多達1000個不同的miRNA,調(diào)控至少30%以上的基因表達。miRNA廣泛存在于多種真核生物中,其生物學(xué)特征主要表現(xiàn)為:①高度保守性:miRNA保守性具有重要的生物學(xué)意義,提示在不同生物發(fā)育過程中,miRNAs具有相同的調(diào)控機制。②時序表達特異性性:在不同組織、不同發(fā)育階段,miRNA的表達水平有顯著差異,miRNA表達是動態(tài)調(diào)控的。③組織表達特異性:一些miRNA表達具有細胞和組織特異性。▲miRNA的形成在細胞核內(nèi),基因組DNA轉(zhuǎn)錄生成較長的RNA分子(長度達1000nt),其被雙鏈RNA特異性的核糖核酸酶Drosha切割成長度大約70-100堿基的具有發(fā)夾結(jié)構(gòu)的RNA分子(primary transcripts,pri-miRNA)。這些具有發(fā)夾結(jié)構(gòu)的RNA分子經(jīng)核輸出蛋白exportin5機制轉(zhuǎn)運到細胞質(zhì),然后被第二個雙鏈RNA特異的核糖核酸酶Dicer切割,形成19-23nt大小的成熟的miRNAs?!鴐iRNA形成和行使功能示意圖成熟的單鏈miRNAs與類似RNA誘導(dǎo)沉默復(fù)合物(RISC)結(jié)合,并參與RNA干擾反應(yīng)(RNAi)。在動物中,結(jié)合在復(fù)合物上的miRNA以一種目前尚未完全清楚的機制結(jié)合到基序基本互補的mRNA上,但這種結(jié)合并不像RNAI反應(yīng)那樣參與mRNA降解,而是阻止所結(jié)合的mRNA的翻譯,導(dǎo)致相應(yīng)基因表達水平的降低?!鴐iRNA功能示意圖▲蛋白功能受到多個miRNA分子的調(diào)控最新的研究表明,miRNA除了經(jīng)典的下調(diào)基因的表達之外,還有7種非經(jīng)典調(diào)控分子機制。①Pri-miRNA可被翻譯為多肽:pri-miRNA進入胞質(zhì)中被核糖體識別為mRNA,翻譯為多肽行使生理功能。②miRNA與功能蛋白結(jié)合:miRNA與AGO蛋白復(fù)合物組成RISC,靶向降解mRNA外,還可與其他功能性蛋白結(jié)合,發(fā)揮非經(jīng)典調(diào)控途徑。③直接激活TLR受體蛋白。④提高蛋白表達水平。⑤miRNA靶向調(diào)控線粒體相關(guān)基因mRNA:該類miRNA一般都具有同時調(diào)控多個線粒體相關(guān)基因的mRNA;⑥直接激活基因轉(zhuǎn)錄過程:如miR-589復(fù)合物可結(jié)合cyclooxygenase-2 (COX2)啟動子區(qū)序列,啟動該基因的轉(zhuǎn)錄過程。⑦靶向負調(diào)控其他非編碼RNA的前體RNA:在細胞核內(nèi),miRNA可靶向降解了pri-miRNA。▲miRNA經(jīng)典作用機制▲miRNA非經(jīng)典調(diào)控機制匯總(圖片源自《cell》)miRNA的功能涉及到各種生理病理過程,包括:發(fā)育過程調(diào)節(jié)、抵抗病毒入侵、動物免疫功能調(diào)節(jié)、各器官/系統(tǒng)疾病以及腫瘤?!鴐iRNA對神經(jīng)元發(fā)育的影響▲miRNA與腫瘤▲miRNA對血小板功能的影響1、尋找研究對象:首先精確的了解課題是針對哪種疾病中的哪個通路、哪個蛋白,再尋找感興趣的miRNA或蛋白作為研究對象,如在樣本中異常升高或降低的指標(biāo)。2、確認研究對象:廣泛檢索資料,經(jīng)多種方法分析高通量數(shù)據(jù),確定目的miRNA或蛋白在目的樣本中升高或降低。該步驟是后續(xù)實驗的基礎(chǔ),必須重視。3、尋找靶關(guān)系:應(yīng)用在線的預(yù)測平臺或生物信息學(xué)技術(shù)尋找目的miRNA可能與哪些蛋白存在相互關(guān)系,或者目的蛋白可能是哪些miRNA的靶蛋白。感興趣的可參考該網(wǎng)址提供的方法:http://weixin.shengxin.ren/web/wei_xin/examples/Html/290000/296256.html;https://blog.csdn.net/herokoking/article/details/77863126。4、確認靶關(guān)系:確認在體內(nèi)這種靶關(guān)系確實存在,miRNA會降低靶蛋白的表達量。5、確認生物功能:證明miRNA-靶蛋白這種相互作用會導(dǎo)致生物學(xué)功能改變。功能實驗的量、涉及范圍、技術(shù)手段及重要程度是文章意義和影響因子的決定因素。▲miRNA實驗設(shè)計思路https://mp.weixin.qq.com/s/hiHHrBvS0P0rcPvF-_PlKw發(fā)布于 2020-06-30 12:33非編碼RNAmiRNA核糖核酸(RNA)?贊同 73??4 條評論?分享?喜歡?收藏?申請轉(zhuǎn)載?文章被以下專欄收錄基因研究發(fā)展史基因科技什么時候可以改變
microRNAs in action: biogenesis, function and regulation | Nature Reviews Genetics
Skip to main content
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Advertisement
View all journals
Search
Log in
Explore content
About the journal
Publish with us
Subscribe
Sign up for alerts
RSS feed
nature
nature reviews genetics
review articles
article
Review Article
Published: 28 June 2023
microRNAs in action: biogenesis, function and regulation
Renfu Shang1, Seungjae Lee?
ORCID: orcid.org/0000-0001-5626-96561, Gayan Senavirathne1 & …Eric C. Lai?
ORCID: orcid.org/0000-0002-8432-58511?Show authors
Nature Reviews Genetics
volume?24,?pages 816–833 (2023)Cite this article
11k Accesses
41 Citations
35 Altmetric
Metrics details
Subjects
RNAiStructural biology
AbstractEver since microRNAs (miRNAs) were first recognized as an extensive gene family >20?years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR–Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Access through your institution
Buy or subscribe
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Access through your institution
Change institution
Buy or subscribe
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99?€ /?30?dayscancel any timeLearn moreSubscribe to this journalReceive 12 print issues and online access176,64?€ per yearonly 14,72 € per issueLearn moreRent or buy this articlePrices vary by article typefrom$1.95to$39.95Learn morePrices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: Canonical and non-canonical miRNA biogenesis pathways.Fig. 2: Structural and sequence features of miRNA substrates and targets.Fig. 3: Cryo-EM and single-molecule studies of Microprocessor and Dicer complexes.Fig. 4: Strategies for the regulation of miRNA biogenesis.Fig. 5: Regulation of miRNA turnover.
Similar content being viewed by others
Decoding chromatin states by proteomic profiling of nucleosome readers
Article
Open access
06 March 2024
Saulius Lukauskas, Andrey Tvardovskiy, … Till Bartke
Population-level comparisons of gene regulatory networks modeled on high-throughput single-cell transcriptomics data
Article
Open access
04 March 2024
Daniel Osorio, Anna Capasso, … Marieke L. Kuijjer
Regulatory activity is the default DNA state in eukaryotes
Article
06 March 2024
Ishika Luthra, Cassandra Jensen, … Carl G. de Boer
ReferencesLee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).Article?
CAS?
PubMed?
Google Scholar?
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).Article?
CAS?
PubMed?
Google Scholar?
Leviten, M. W., Lai, E. C. & Posakony, J. W. The Drosophila gene Bearded encodes a novel small protein and shares 3′ UTR sequence motifs with multiple Enhancer of split complex genes. Development 124, 4039–4051 (1997).Article?
CAS?
PubMed?
Google Scholar?
Lai, E. C. & Posakony, J. W. The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split complex gene expression. Development 124, 4847–4856 (1997).Article?
CAS?
PubMed?
Google Scholar?
Lai, E. C., Burks, C. & Posakony, J. W. The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of Enhancer of split complex transcripts. Development 125, 4077–4088 (1998).Article?
CAS?
PubMed?
Google Scholar?
Lai, E. C. microRNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364 (2002).Article?
CAS?
PubMed?
Google Scholar?
Lau, N., Lim, L., Weinstein, E. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).Article?
CAS?
PubMed?
Google Scholar?
Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).Article?
CAS?
PubMed?
Google Scholar?
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).Article?
CAS?
PubMed?
Google Scholar?
Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Czech, B. & Hannon, G. J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31 (2010).Article?
PubMed Central?
PubMed?
Google Scholar?
Yang, J. S. & Lai, E. C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43, 892–903 (2011).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Maurin, T., Cazalla, D., Yang, J. S., Bortolamiol-Becet, D. & Lai, E. C. RNase III-independent microRNA biogenesis in mammalian cells. RNA 18, 2166–2173 (2012).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Shang, R. et al. Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects. Nat. Commun. 6, 8430 (2015).Article?
CAS?
PubMed?
Google Scholar?
Lai, E. C., Tam, B. & Rubin, G. M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19, 1067–1080 (2005).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).Article?
CAS?
PubMed?
Google Scholar?
Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA–target recognition. PLoS Biol. 3, e85 (2005).Article?
PubMed Central?
PubMed?
Google Scholar?
Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing Argonaute silencing complex. Nature 456, 209–213 (2008).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Elkayam, E. et al. The structure of human Argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).Article?
CAS?
PubMed?
Google Scholar?
Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).Article?
CAS?
PubMed?
Google Scholar?
Park, M. S. et al. Human Argonaute3 has slicer activity. Nucleic acids Res. 45, 11867–11877 (2017).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Park, M. S., Sim, G., Kehling, A. C. & Nakanishi, K. Human Argonaute2 and Argonaute3 are catalytically activated by different lengths of guide RNA. Proc. Natl Acad. Sci. USA 117, 28576–28578 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Nguyen, H. M., Nguyen, T. D., Nguyen, T. L. & Nguyen, T. A. Orientation of human microprocessor on primary microRNAs. Biochemistry 58, 189–198 (2019).Article?
CAS?
PubMed?
Google Scholar?
Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 125, 887–901 (2006).Article?
CAS?
PubMed?
Google Scholar?
Zeng, Y. & Cullen, B. R. Efficient processing of primary microRNA hairpins by Drosha requires flanking non-structured RNA sequences. J. Biol. Chem. 280, 27595–27603 (2005).Article?
CAS?
PubMed?
Google Scholar?
Zeng, Y., Yi, R. & Cullen, B. R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24, 138–148 (2005).Article?
CAS?
PubMed?
Google Scholar?
Ma, H., Wu, Y., Choi, J. G. & Wu, H. Lower and upper stem-single-stranded RNA junctions together determine the Drosha cleavage site. Proc. Natl Acad. Sci. USA 110, 20687–20692 (2013).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Auyeung, V. C., Ulitsky, I., McGeary, S. E. & Bartel, D. P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152, 844–858 (2013). This study is the first to utilize massively parallel substrate assays to reveal motifs involved in pri-miRNA processing.Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Fang, W. & Bartel, D. P. The menu of features that define primary microRNAs and enable de novo design of microRNA genes. Mol. Cell 60, 131–145 (2015).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Partin, A. C. et al. Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs. Nat. Commun. 8, 1737 (2017).Article?
PubMed Central?
PubMed?
Google Scholar?
Nguyen, T. A., Park, J., Dang, T. L., Choi, Y. G. & Kim, V. N. Microprocessor depends on hemin to recognize the apical loop of primary microRNA. Nucleic acids Res. 46, 5726–5736 (2018).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Kim, K., Nguyen, T. D., Li, S. & Nguyen, T. A. SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA 24, 892–898 (2018).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Fernandez, N. et al. Genetic variation and RNA structure regulate microRNA biogenesis. Nat. Commun. 8, 15114 (2017).Article?
PubMed Central?
PubMed?
Google Scholar?
Li, S., Nguyen, T. D., Nguyen, T. L. & Nguyen, T. A. Mismatched and wobble base pairs govern primary microRNA processing by human microprocessor. Nat. Commun. 11, 1926 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Li, S., Le, T. N., Nguyen, T. D., Trinh, T. A. & Nguyen, T. A. Bulges control pri-miRNA processing in a position and strand-dependent manner. RNA Biol. 18, 1716–1726 (2021).Article?
CAS?
PubMed?
Google Scholar?
Lee, Y. Y., Kim, H. & Kim, V. N. Sequence determinant of small RNA production by DICER. Nature 615, 323–330 (2023).Article?
CAS?
PubMed?
Google Scholar?
Rice, G. M., Shivashankar, V., Ma, E. J., Baryza, J. L. & Nutiu, R. Functional atlas of primary miRNA maturation by the microprocessor. Mol. Cell 80, 892–902.e4 (2020).Article?
CAS?
PubMed?
Google Scholar?
Kim, K. et al. A quantitative map of human primary microRNA processing sites. Mol. Cell 81, 3422–3439.e11 (2021).Article?
CAS?
PubMed?
Google Scholar?
Kang, W. et al. MapToCleave: high-throughput profiling of microRNA biogenesis in living cells. Cell Rep. 37, 110015 (2021).Article?
CAS?
PubMed?
Google Scholar?
Chiang, H. R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Consortium, R. RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic acids Res. 49, D212–D220 (2021).Article?
Google Scholar?
Fromm, B., Zhong, X., Tarbier, M., Friedlander, M. R. & Hackenberg, M. The limits of human microRNA annotation have been met. RNA https://doi.org/10.1261/rna.079098.122 (2022).Article?
PubMed Central?
PubMed?
Google Scholar?
Nguyen, T. L., Nguyen, T. D., Bao, S., Li, S. & Nguyen, T. A. The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human microprocessor. Nucleic acids Res. 48, 2579–2593 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Luo, Q. J. et al. RNA structure probing reveals the structural basis of Dicer binding and cleavage. Nat. Commun. 12, 3397 (2021).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68 (2004).Article?
CAS?
PubMed?
Google Scholar?
Macrae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006).Article?
CAS?
PubMed?
Google Scholar?
MacRae, I. J., Zhou, K. & Doudna, J. A. Structural determinants of RNA recognition and cleavage by Dicer. Nat. Struct. Mol. Biol. 14, 934–940 (2007).Article?
CAS?
PubMed?
Google Scholar?
Vermeulen, A. et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11, 674–682 (2005).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Park, J. E. et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Gu, S. et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 151, 900–911 (2012).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Nguyen, T. D., Trinh, T. A., Bao, S. & Nguyen, T. A. Secondary structure RNA elements control the cleavage activity of DICER. Nat. Commun. 13, 2138 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822 (2010).Article?
CAS?
PubMed?
Google Scholar?
Boland, A., Tritschler, F., Heimstadt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep. 11, 522–527 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Schirle, N. T., Sheu-Gruttadauria, J., Chandradoss, S. D., Joo, C. & MacRae, I. J. Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. eLife https://doi.org/10.7554/eLife.07646 (2015).Article?
PubMed Central?
PubMed?
Google Scholar?
Shin, C. et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789–802 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Chi, S. W., Hannon, G. J. & Darnell, R. B. An alternative mode of microRNA target recognition. Nat. Struct. Mol. Biol. 19, 321–327 (2012).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Lal, A. et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell 35, 610–625 (2009).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Loeb, G. B. et al. Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol. Cell 48, 760–770 (2012).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Becker, W. R. et al. High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Mol. Cell 75, 741–755.e11 (2019).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
McGeary, S. E. et al. The biochemical basis of microRNA targeting efficacy. Science https://doi.org/10.1126/science.aav1741 (2019). This paper reveals broad features of miRNA–target interactions using RBNS.Article?
PubMed Central?
PubMed?
Google Scholar?
McGeary, S. E., Bisaria, N., Pham, T. M., Wang, P. Y. & Bartel, D. P. microRNA 3′-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position. eLife https://doi.org/10.7554/eLife.69803 (2022).Article?
PubMed Central?
PubMed?
Google Scholar?
Grimson, A. et al. microRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Gu, S., Jin, L., Zhang, F., Sarnow, P. & Kay, M. A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat. Struct. Mol. Biol. 16, 144–150 (2009).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Schnall-Levin, M. et al. Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res. 21, 1395–1403 (2011).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Zhang, K. et al. A novel class of microRNA-recognition elements that function only within open reading frames. Nat. Struct. Mol. Biol. 25, 1019–1027 (2018).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Yu, S. & Kim, V. N. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0246-8 (2020).Article?
PubMed?
Google Scholar?
Yang, A. et al. 3′ uridylation confers miRNAs with non-canonical target repertoires. Mol. Cell 75, 511–522.e4 (2019).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Sheu-Gruttadauria, J., Xiao, Y., Gebert, L. F. & MacRae, I. J. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J. 38, e101153 (2019).Article?
PubMed Central?
PubMed?
Google Scholar?
Sim, G. et al. Manganese-dependent microRNA trimming by 3′?→?5′ exonucleases generates 14-nucleotide or shorter tiny RNAs. Proc. Natl Acad. Sci. USA 119, e2214335119 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Kim, H. H. et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 23, 1743–1748 (2009).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Sternburg, E. L., Estep, J. A., Nguyen, D. K., Li, Y. & Karginov, F. V. Antagonistic and cooperative AGO2–PUM interactions in regulating mRNAs. Sci. Rep. 8, 15316 (2018).Article?
PubMed Central?
PubMed?
Google Scholar?
Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).Article?
CAS?
PubMed?
Google Scholar?
Kim, S. et al. The regulatory impact of RNA-binding proteins on microRNA targeting. Nat. Commun. 12, 5057 (2021).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).Article?
CAS?
PubMed?
Google Scholar?
Liu, Z. et al. Cryo-EM structure of human dicer and its complexes with a pre-miRNA substrate. Cell 173, 1191–1203.e12 (2018).Article?
CAS?
PubMed?
Google Scholar?
Nguyen, T. A. et al. Functional anatomy of the human microprocessor. Cell 161, 1374–1387 (2015).Article?
CAS?
PubMed?
Google Scholar?
Kwon, S. C. et al. Structure of human DROSHA. Cell 164, 81–90 (2016).Article?
CAS?
PubMed?
Google Scholar?
Barr, I. et al. DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein. J. Biol. Chem. 286, 16716–16725 (2011).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Quick-Cleveland, J. et al. The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin. Cell Rep. 7, 1994–2005 (2014).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Jin, W., Wang, J., Liu, C. P., Wang, H. W. & Xu, R. M. Structural basis for pri-miRNA recognition by Drosha. Mol. Cell 78, 423–433.e5 (2020).Article?
CAS?
PubMed?
Google Scholar?
Partin, A. C. et al. Cryo-EM structures of human Drosha and DGCR8 in complex with primary microRNA. Mol. Cell 78, 411–422 e414 (2020). Together with Jin et al. (2020), this work is the first cryo-EM study of Microprocessor structures.Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Shi, Z., Nicholson, R. H., Jaggi, R. & Nicholson, A. W. Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates. Nucleic acids Res. 39, 2756–2768 (2011).Article?
CAS?
PubMed?
Google Scholar?
Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing. Nat. Struct. Mol. Biol. 11, 214–218 (2004).Article?
CAS?
PubMed?
Google Scholar?
Lee, Y. Y., Lee, H., Kim, H., Kim, V. N. & Roh, S. H. Structure of the human DICER–pre-miRNA complex in a dicing state. Nature 615, 331–338 (2023).Article?
CAS?
PubMed?
Google Scholar?
Zapletal, D. et al. Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol. Cell 82, 4064–4079.e13 (2022). Together with Lee et al. (Nature, 2023), this work reports new cryo-EM structures for active mammalian Dicer complex.Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Jouravleva, K. et al. Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB. Mol. Cell 82, 4049–4063.e6 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Wei, X. et al. Structural basis of microRNA processing by Dicer-like 1. Nat. Plants 7, 1389–1396 (2021).Article?
CAS?
PubMed?
Google Scholar?
Fareh, M. et al. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat. Commun. 7, 13694 (2016).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Yamaguchi, S. et al. Structure of the Dicer-2–R2D2 heterodimer bound to a small RNA duplex. Nature 607, 393–398 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Su, S. et al. Structural insights into dsRNA processing by Drosophila Dicer-2–Loqs-PD. Nature 607, 399–406 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Wang, Q. et al. Mechanism of siRNA production by a plant Dicer–RNA complex in dicing-competent conformation. Science 374, 1152–1157 (2021).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Herbert, K. M. et al. A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting. RNA 22, 175–183 (2016).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Naganuma, M., Tadakuma, H. & Tomari, Y. Single-molecule analysis of processive double-stranded RNA cleavage by Drosophila Dicer-2. Nat. Commun. 12, 4268 (2021).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Iwasaki, S. et al. Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature 521, 533–536 (2015).Article?
CAS?
PubMed?
Google Scholar?
Tsuboyama, K., Tadakuma, H. & Tomari, Y. Conformational activation of argonaute by distinct yet coordinated actions of the Hsp70 and Hsp90 chaperone systems. Mol. Cell 70, 722–729.e4 (2018).Article?
CAS?
PubMed?
Google Scholar?
Willkomm, S. et al. Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2. Nat. Commun. 13, 3825 (2022). This study uses single-molecule fluorescence to dissect internal motions within human Ago2 during transitions from guide RNA binding to target capture.Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Salomon, W. E., Jolly, S. M., Moore, M. J., Zamore, P. D. & Serebrov, V. Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides. Cell 162, 84–95 (2015).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Yao, C., Sasaki, H. M., Ueda, T., Tomari, Y. & Tadakuma, H. Single-molecule analysis of the target cleavage reaction by the Drosophila RNAi enzyme complex. Mol. Cell 59, 125–132 (2015).Article?
CAS?
PubMed?
Google Scholar?
Chandradoss, S. D., Schirle, N. T., Szczepaniak, M., MacRae, I. J. & Joo, C. A dynamic search process underlies microRNA targeting. Cell 162, 96–107 (2015). This study uses the distance sensing capability of smFRET to visualize strategies of target interrogation by RISC.Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Klum, S. M., Chandradoss, S. D., Schirle, N. T., Joo, C. & MacRae, I. J. Helix-7 in argonaute2 shapes the microRNA seed region for rapid target recognition. EMBO J. 37, 75–88 (2018).Article?
CAS?
PubMed?
Google Scholar?
Cui, T. J. et al. Argonaute bypasses cellular obstacles without hindrance during target search. Nat. Commun. 10, 4390 (2019).Article?
PubMed Central?
PubMed?
Google Scholar?
Ruijtenberg, S. et al. mRNA structural dynamics shape Argonaute–target interactions. Nat. Struct. Mol. Biol. 27, 790–801 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Cialek, C. A. et al. Imaging translational control by Argonaute with single-molecule resolution in live cells. Nat. Commun. 13, 3345 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Kobayashi, H. & Singer, R. H. Single-molecule imaging of microRNA-mediated gene silencing in cells. Nat. Commun. 13, 1435 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Sheu-Gruttadauria, J. & MacRae, I. J. Structural foundations of RNA silencing by Argonaute. J. Mol. Biol. 429, 2619–2639 (2017).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Nakanishi, K. Anatomy of four human Argonaute proteins. Nucleic acids Res. 50, 6618–6638 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Sheu-Gruttadauria, J. et al. Structural basis for target-directed microRNA degradation. Mol. Cell https://doi.org/10.1016/j.molcel.2019.06.019 (2019).Article?
PubMed Central?
PubMed?
Google Scholar?
Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32, 276–284 (2008).Article?
CAS?
PubMed?
Google Scholar?
Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993 (2008).Article?
CAS?
PubMed?
Google Scholar?
Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).Article?
CAS?
PubMed?
Google Scholar?
Thornton, J. E., Chang, H. M., Piskounova, E. & Gregory, R. I. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA 18, 1875–1885 (2012).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Chang, H. M., Triboulet, R., Thornton, J. E. & Gregory, R. I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway. Nature https://doi.org/10.1038/nature12119 (2013).Article?
PubMed Central?
PubMed?
Google Scholar?
Faehnle, C. R., Walleshauser, J. & Joshua-Tor, L. Mechanism of Dis3l2 substrate recognition in the Lin28–let-7 pathway. Nature 514, 252–256 (2014).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Ustianenko, D. et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19, 1632–1638 (2013).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Heo, I. et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151, 521–532 (2012).Article?
CAS?
PubMed?
Google Scholar?
Kim, H. et al. A mechanism for microRNA arm switching regulated by uridylation. Mol. Cell 78, 1224–1236.e5 (2020).Article?
CAS?
PubMed?
Google Scholar?
Michlewski, G. & Caceres, J. F. Post-transcriptional control of miRNA biogenesis. RNA 25, 1–16 (2019).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Treiber, T., Treiber, N. & Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 20, 5–20 (2019).Article?
CAS?
PubMed?
Google Scholar?
Michlewski, G., Guil, S., Semple, C. A. & Caceres, J. F. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell 32, 383–393 (2008).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Nussbacher, J. K. & Yeo, G. W. Systematic discovery of RNA binding proteins that regulate microRNA levels. Mol. Cell 69, 1005–1016.e7 (2018).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Treiber, T. et al. A compendium of RNA-binding proteins that regulate microRNA biogenesis. Mol. Cell 66, 270–284.e13 (2017).Article?
CAS?
PubMed?
Google Scholar?
Tokumaru, S., Suzuki, M., Yamada, H., Nagino, M. & Takahashi, T. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 29, 2073–2077 (2008).Article?
CAS?
PubMed?
Google Scholar?
Martello, G. et al. A microRNA targeting dicer for metastasis control. Cell 141, 1195–1207 (2010).Article?
CAS?
PubMed?
Google Scholar?
Wang, D. et al. Uncovering the cellular capacity for intensive and specific feedback self-control of the argonautes and microRNA targeting activity. Nucleic acids Res. 48, 4681–4697 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Smibert, P., Yang, J. S., Azzam, G., Liu, J. L. & Lai, E. C. Homeostatic control of Argonaute stability by microRNA availability. Nat. Struct. Mol. Biol. 20, 789–795 (2013).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Kobayashi, H., Shoji, K., Kiyokawa, K., Negishi, L. & Tomari, Y. Iruka eliminates dysfunctional argonaute by selective ubiquitination of its empty state. Mol. Cell 73, 119–129.e5 (2019).Article?
CAS?
PubMed?
Google Scholar?
Martinez, N. J. & Gregory, R. I. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA 19, 605–612 (2013).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Derrien, B. et al. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc. Natl Acad. Sci. USA 109, 15942–15946 (2012).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75–84 (2009). This paper identifies the first cross-regulations between miRNA factors, in this case between Microprocessor components Drosha and DGCR8 (see also references 138 and 139).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Kadener, S. et al. Genome-wide identification of targets of the Drosha-Pasha/DGCR8 complex. RNA 15, 537–545 (2009).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Smibert, P. et al. A Drosophila genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs. RNA 17, 1997–2010 (2011).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Cui, Y. et al. Global miRNA dosage control of embryonic germ layer specification. Nature 593, 602–606 (2021).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Baskerville, S. & Bartel, D. P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247 (2005).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Du, P., Wang, L., Sliz, P. & Gregory, R. I. A biogenesis step upstream of microprocessor controls miR-17 approximately 92 expression. Cell 162, 885–899 (2015).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Donayo, A. O. et al. Oncogenic biogenesis of pri-miR-17-92 reveals hierarchy and competition among polycistronic microRNAs. Mol. Cell 75, 340–356 (2019).Article?
CAS?
PubMed?
Google Scholar?
Truscott, M., Islam, A. B. & Frolov, M. V. Novel regulation and functional interaction of polycistronic miRNAs. RNA 22, 129–138 (2016).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Lataniotis, L. et al. CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function. Sci. Rep. 7, 8585 (2017).Article?
PubMed Central?
PubMed?
Google Scholar?
Haar, J. et al. The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation. Nucleic acids Res. 44, 1326–1341 (2016).Article?
CAS?
PubMed?
Google Scholar?
Vilimova, M. et al. Cis regulation within a cluster of viral microRNAs. Nucleic acids Res. 49, 10018–10033 (2021).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Yang, J. S. & Lai, E. C. Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle 9, 4455–4460 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Jee, D. et al. Dual strategies for Argonaute2-mediated biogenesis of erythroid miRNAs underlie conserved requirements for slicing in mammals. Mol. Cell 69, 265–278.e6 (2018).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Kretov, D. A. et al. Ago2-dependent processing allows miR-451 to evade the global microRNA turnover elicited during erythropoiesis. Mol. Cell 78, 317–328.e6 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Shang, R. et al. Genomic clustering facilitates nuclear processing of suboptimal pri-miRNA loci. Mol. Cell 78, 303–316.e4 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Fang, W. & Bartel, D. P. microRNA clustering assists processing of suboptimal microRNA hairpins through the action of the ERH protein. Mol. Cell 78, 289–302.e6 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Hutter, K. et al. SAFB2 enables the processing of suboptimal stem–loop structures in clustered primary miRNA transcripts. Mol. Cell 78, 876–889 (2020). Together with Shang et al. (2020) and Fang and Bartel (2020), this work reports mechanisms for miRNA cluster assistance for suboptimal miRNA biogenesis.Article?
CAS?
PubMed?
Google Scholar?
Kwon, S. C. et al. ERH facilitates microRNA maturation through the interaction with the N-terminus of DGCR8. Nucleic acids Res. 48, 11097–11112 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Kim, Y. K. & Kim, V. N. Processing of intronic microRNAs. EMBO J. 26, 775–783 (2007).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Ballarino, M. et al. Coupled RNA processing and transcription of intergenic primary microRNAs. Mol. Cell. Biol. 29, 5632–5638 (2009).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Morlando, M. et al. Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol. 15, 902–909 (2008).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Liu, H. et al. HP1BP3, a chromatin retention factor for co-transcriptional microRNA processing. Mol. Cell 63, 420–432 (2016).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Church, V. A. et al. Microprocessor recruitment to elongating RNA polymerase II is required for differential expression of microRNAs. Cell Rep. 20, 3123–3134 (2017).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Pawlicki, J. M. & Steitz, J. A. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J. Cell Biol. 182, 61–76 (2008).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Bernstein, E., Caudy, A., Hammond, S. & Hannon, G. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).Article?
CAS?
PubMed?
Google Scholar?
Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).Article?
CAS?
PubMed?
Google Scholar?
Flemr, M. et al. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155, 807–816 (2013). This paper reports that an endogenous N-terminally truncated Dicer isoform processes siRNAs in mouse oocytes, an unusual setting for mammalian siRNA biology.Article?
CAS?
PubMed?
Google Scholar?
Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).Article?
CAS?
PubMed?
Google Scholar?
Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Suh, N. et al. microRNA function is globally suppressed in mouse oocytes and early embryos. Curr. Biol. 20, 271–277 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Murchison, E. P. et al. Critical roles for Dicer in the female germline. Genes Dev. 21, 682–693 (2007).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Kataruka, S. et al. microRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes. Nucleic acids Res. 48, 8050–8062 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Schuster, S., Miesen, P. & van Rij, R. P. Antiviral RNAi in insects and mammals: parallels and differences. Viruses https://doi.org/10.3390/v11050448 (2019).Article?
PubMed Central?
PubMed?
Google Scholar?
Kennedy, E. M. et al. Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer. Proc. Natl Acad. Sci. USA 112, E6945–E6954 (2015).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Poirier, E. Z. et al. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science 373, 231–236 (2021).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Li, Y., Lu, J., Han, Y., Fan, X. & Ding, S. W. RNA interference functions as an antiviral immunity mechanism in mammals. Science 342, 231–234 (2013).Article?
CAS?
PubMed?
Google Scholar?
Maillard, P. V. et al. Antiviral RNA interference in mammalian cells. Science 342, 235–238 (2013).Article?
CAS?
PubMed?
Google Scholar?
Gantier, M. P. et al. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic acids Res. 39, 5692–5703 (2011).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).Article?
PubMed?
Google Scholar?
Kingston, E. R. & Bartel, D. P. Global analyses of the dynamics of mammalian microRNA metabolism. Genome Res. 29, 1777–1790 (2019).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Gibbings, D. et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat. Cell Biol. 14, 1314–1321 (2012).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Reichholf, B. et al. Time-resolved small RNA sequencing unravels the molecular principles of microRNA homeostasis. Mol. Cell 75, 756–768.e7 (2019).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Krol, J. et al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141, 618–631 (2010).Article?
CAS?
PubMed?
Google Scholar?
Ramachandran, V. & Chen, X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321, 1490–1492 (2008).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Shukla, S., Bjerke, G. A., Muhlrad, D., Yi, R. & Parker, R. The RNase PARN controls the levels of specific miRNAs that contribute to p53 regulation. Mol. Cell 73, 1204–1216.e4 (2019).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Yu, Y. et al. ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLoS Biol. 15, e2001272 (2017).Article?
PubMed Central?
PubMed?
Google Scholar?
Ibrahim, F. et al. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc. Natl Acad. Sci. USA 107, 3906–3911 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Chatterjee, S. & Grosshans, H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461, 546–549 (2009).Article?
CAS?
PubMed?
Google Scholar?
Cazalla, D., Yario, T. & Steitz, J. A. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328, 1563–1566 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Marcinowski, L. et al. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog. 8, e1002510 (2012).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Ghini, F. et al. Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation. Nat. Commun. 9, 3119 (2018).Article?
PubMed Central?
PubMed?
Google Scholar?
de la Mata, M. et al. Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep. https://doi.org/10.15252/embr.201540078 (2015).Article?
PubMed Central?
PubMed?
Google Scholar?
Ameres, S. L. et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Ameres, S. L. & Zamore, P. D. Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell Biol. 14, 475–488 (2013).Article?
CAS?
PubMed?
Google Scholar?
Yang, A. et al. AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nat. Commun. 11, 2765 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Yang, A. et al. TENT2, TUT4, and TUT7 selectively regulate miRNA sequence and abundance. Nat. Commun. 13, 5260 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Shi, C. Y. et al. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science https://doi.org/10.1126/science.abc9359 (2020).Article?
PubMed Central?
PubMed?
Google Scholar?
Han, J. et al. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science https://doi.org/10.1126/science.abc9546 (2020). Together with Shi et al. (2020), this work reveals the regulatory mechanism of TDMD, via ZSWIM8-mediated Argonaute protein degradation.Article?
PubMed Central?
PubMed?
Google Scholar?
Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science https://doi.org/10.1126/science.aam8526 (2017).Article?
PubMed?
Google Scholar?
Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147, 1537–1550 (2011).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174, 350–362.e17 (2018).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Donnelly, B. F. et al. The developmentally timed decay of an essential microRNA family is seed-sequence dependent. Cell Rep. 40, 111154 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Li, L. et al. Widespread microRNA degradation elements in target mRNAs can assist the encoded proteins. Genes Dev. 35, 1595–1609 (2021).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Bitetti, A. et al. microRNA degradation by a conserved target RNA regulates animal behavior. Nat. Struct. Mol. Biol. 25, 244–251 (2018).Article?
CAS?
PubMed?
Google Scholar?
Kingston, E. R., Blodgett, L. W. & Bartel, D. P. Endogenous transcripts direct microRNA degradation in Drosophila, and this targeted degradation is required for proper embryonic development. Mol. Cell 82, 3872–3884.e9 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Sheng, P. et al. Screening of Drosophila microRNA-degradation sequences reveals Argonaute1 mRNA’s role in regulating miR-999. Nat. Commun. 14, 2108 (2023).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Katoh, T. et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 23, 433–438 (2009).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
D’Ambrogio, A., Gu, W., Udagawa, T., Mello, C. C. & Richter, J. D. Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep. https://doi.org/10.1016/j.celrep.2012.10.023 (2012).Article?
PubMed Central?
PubMed?
Google Scholar?
Jeong, H. C. et al. USB1 is a miRNA deadenylase that regulates hematopoietic development. Science 379, 901–907 (2023).Article?
CAS?
PubMed?
Google Scholar?
Mansur, F. et al. Gld2-catalyzed 3′ monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior. RNA 22, 1492–1499 (2016).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Vieux, K. F. et al. Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans. Nucleic Acids Res. 49, 11167–11180 (2021).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Lee, S. et al. Promiscuous splicing-derived hairpins are dominant substrates of tailing-mediated defense of miRNA biogenesis in mammals. Cell Rep. 42, 112111 (2023).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Nishida, K. M. et al. Roles of R2D2, a cytoplasmic D2 body component, in the endogenous siRNA pathway in Drosophila. Mol. Cell 49, 680–691 (2013).Article?
CAS?
PubMed?
Google Scholar?
Drake, M. et al. A requirement for ERK dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in Caenorhabditis elegans. Dev. Cell 31, 614–628 (2014).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Shang, R. et al. Regulated dicing of pre-mir-144 via reshaping of its terminal loop. Nucleic acids Res. 50, 7637–7654 (2022).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Gutierrez-Perez, P. et al. miR-1 sustains muscle physiology by controlling V-ATPase complex assembly. Sci. Adv. 7, eabh1434 (2021).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Yang, B., Schwartz, M. & McJunkin, K. In vivo CRISPR screening for phenotypic targets of the mir-35-42 family in C. elegans. Genes Dev. 34, 1227–1238 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Ecsedi, M., Rausch, M. & Grosshans, H. The let-7 microRNA directs vulval development through a single target. Dev. Cell 32, 335–344 (2015).Article?
CAS?
PubMed?
Google Scholar?
Garaulet, D. L., Zhang, B., Wei, L., Li, E. & Lai, E. C. miRNAs and neural alternative polyadenylation specify the virgin behavioral state. Dev. Cell 54, 410–423 (2020).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100 (2007).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007). Together with Okamura et al. (2007), this work reports the first non-canonical miRNA pathway, in which intron splicing bypasses Drosha to generate pre-miRNA mimics, termed mirtrons.Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Bogerd, H. P. et al. A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral microRNAs. Mol. Cell 37, 135–142 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Xie, M. et al. Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell 155, 1568–1580 (2013).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Zamudio, J. R., Kelly, T. J. & Sharp, P. A. Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell 156, 920–934 (2014).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Cifuentes, D. et al. A novel miRNA processing pathway independent of dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Yang, J. S. et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl Acad. Sci. USA 107, 15163–15168 (2010).Article?
CAS?
PubMed Central?
PubMed?
Google Scholar?
Download referencesAcknowledgementsThe authors thank G. La Rocca, B. Kleaveland and L. Joshua-Tor for critical reading, and the referees for informative comments. S.L. was supported by a training award from the NYSTEM contract #C32559GG and the Center for Stem Cell Biology at MSK. Work in E.C.L.’s group was supported by the National Institutes of Health (NIH) (R01-GM083300) and MSK Core Grant P30-CA008748. The authors apologize to those whose work is not included owing to space constraints.Author informationAuthors and AffiliationsDevelopmental Biology Program, Sloan Kettering Institute, New York, NY, USARenfu Shang,?Seungjae Lee,?Gayan Senavirathne?&?Eric C. LaiAuthorsRenfu ShangView author publicationsYou can also search for this author in
PubMed?Google ScholarSeungjae LeeView author publicationsYou can also search for this author in
PubMed?Google ScholarGayan SenavirathneView author publicationsYou can also search for this author in
PubMed?Google ScholarEric C. LaiView author publicationsYou can also search for this author in
PubMed?Google ScholarContributionsR.S., S.L., G.S. and E.C.L. wrote and edited the manuscript. R.S. S.L. and G.S. drafted the figures. R.S., S.L., G.S. and E.C.L. discussed and reviewed the manuscript before submission.Corresponding authorCorrespondence to
Eric C. Lai.Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Genetics thanks Shuo Gu, Tuan Anh Nguyen, Ian Macrae who co-reviewed with Luca Gebert, and the other, anonymous, reviewer for their contribution to the peer review of this work.
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleShang, R., Lee, S., Senavirathne, G. et al. microRNAs in action: biogenesis, function and regulation.
Nat Rev Genet 24, 816–833 (2023). https://doi.org/10.1038/s41576-023-00611-yDownload citationAccepted: 27 April 2023Published: 28 June 2023Issue Date: December 2023DOI: https://doi.org/10.1038/s41576-023-00611-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Brain-targeted delivery of neuroprotective survival gene minimizing hematopoietic cell contamination: implications for Parkinson’s disease treatment
Min Hak LeeSukyeong KangJin Woo Choi
Journal of Translational Medicine (2024)
Small noncoding RNAs and sperm nuclear basic proteins reflect the environmental impact on germ cells
Giulio FerreroRosaria FestaAlessio Naccarati
Molecular Medicine (2024)
Serum microRNA profile of rhesus macaques following ionizing radiation exposure and treatment with a medical countermeasure, Ex-Rad
Eric RussOluseyi O. FatanmiVijay K. Singh
Scientific Reports (2024)
Non-coding RNAs in disease: from mechanisms to therapeutics
Kinga NemethRecep BayraktarGeorge A. Calin
Nature Reviews Genetics (2024)
Substrate promiscuity of Dicer toward precursors of the let-7 family and their 3′-end modifications
Gunjan DadhwalHebatallah SamyPascale Legault
Cellular and Molecular Life Sciences (2024)
Access through your institution
Buy or subscribe
Access through your institution
Change institution
Buy or subscribe
Advertisement
Explore content
Research articles
Reviews & Analysis
News & Comment
Videos
Current issue
Collections
Follow us on Facebook
Follow us on Twitter
Subscribe
Sign up for alerts
RSS feed
About the journal
Aims & Scope
Journal Information
About the Editors
Journal Credits
Journal Metrics
Publishing model
Editorial input and checks
Editorial Values Statement
Editorial policies
Webcasts
Posters
Calendars
Conferences
Web Feeds
Contact
Reviews Cross-Journal Editorial Team
Publish with us
For Authors
For Referees
Submit manuscript
Search
Search articles by subject, keyword or author
Show results from
All journals
This journal
Search
Advanced search
Quick links
Explore articles by subject
Find a job
Guide to authors
Editorial policies
Nature Reviews Genetics (Nat Rev Genet)
ISSN 1471-0064 (online)
ISSN 1471-0056 (print)
nature.com sitemap
About Nature Portfolio
About us
Press releases
Press office
Contact us
Discover content
Journals A-Z
Articles by subject
Protocol Exchange
Nature Index
Publishing policies
Nature portfolio policies
Open access
Author & Researcher services
Reprints & permissions
Research data
Language editing
Scientific editing
Nature Masterclasses
Research Solutions
Libraries & institutions
Librarian service & tools
Librarian portal
Open research
Recommend to library
Advertising & partnerships
Advertising
Partnerships & Services
Media kits
Branded
content
Professional development
Nature Careers
Nature
Conferences
Regional websites
Nature Africa
Nature China
Nature India
Nature Italy
Nature Japan
Nature Korea
Nature Middle East
Privacy
Policy
Use
of cookies
Your privacy choices/Manage cookies
Legal
notice
Accessibility
statement
Terms & Conditions
Your US state privacy rights
? 2024 Springer Nature Limited
Close banner
Close
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.
Email address
Sign up
I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
Close banner
Close
Get the most important science stories of the day, free in your inbox.
Sign up for Nature Briefing
關(guān)于microRNA - 丁香園
丁香無線
丁香園論壇
丁香醫(yī)生
新浪微博
丁香云管家
丁香智匯
丁香人才
RSS
登錄
第三方登錄
注冊
論壇
神經(jīng)
?
骨科
?
腫瘤
?
心血管
?更多
胸外
腎內(nèi)
風(fēng)濕免疫
感染
呼吸
消化
內(nèi)分泌
論文基金
藥品匯
健康互聯(lián)
丁香六度
會議
醫(yī)療器械
檢驗
婦產(chǎn)
兒科
泌尿
麻醉
影像
普外
整形
眼科
神外
醫(yī)院匯
精神
皮膚
口腔
重癥
耳鼻喉
康復(fù)
丁香公開課
超聲
血液
丁香園
腫瘤
頻道首頁
最新資訊
臨床綜述
指南共識
精彩幻燈
經(jīng)典病例
丁香公開課
RSS
關(guān)于microRNA
2011-09-21 00:00
來源:歐易生物
作者:
字體大小
-
|
+
microRNAs (簡稱miRNA)是一類進化上高度保守的小分子非編碼RNA,長度大約22nt左右,具有轉(zhuǎn)錄后調(diào)控基因表達的功能。第一個microRNA 于1993 年被發(fā)現(xiàn)。2000年之后,關(guān)于miRNA的研究取得了很大進展,目前已經(jīng)有1000多個人類被發(fā)現(xiàn),這些miRNA調(diào)控至少 30% 以上的基因表達,參與多種生理病理過程。 編碼miRNA的基因可能位于功能基因編碼區(qū)、非編碼區(qū),可能成簇表達或獨立表達。在細胞核內(nèi),基因組DNA 轉(zhuǎn)錄生成較長的pri-pre-microRNA,之后被Drosha酶切割pri-pre-miRNA成形成長度大約70-100 堿基的、具發(fā)夾結(jié)構(gòu)的pre- microRNA。這些發(fā)夾結(jié)構(gòu)的RNA 被核輸出蛋白exportin5轉(zhuǎn)運到細胞質(zhì),在唄胞漿中的Dicer 酶切割形成19-23nt 大小的成熟的miRNAs 產(chǎn)物。成熟的單鏈miRNAs 與一系列蛋白形成miRNA誘導(dǎo)的沉默復(fù)合物(miRISC),結(jié)合于靶mRNA的3ˊ-UTR區(qū),阻止所結(jié)合的mRNA 的翻譯或直接降解靶miRNA。每個miRNA可以調(diào)控多個(甚至上百個)靶基因,而特定靶mRNA也可以同時被多個miRNAs調(diào)節(jié)。 成熟的miRNA具有如下特點:(1)通常的長度為20~24 nt , 但在3′端可以有1~2 個堿基的長度變化;(2)5′端有一磷酸基團, 3′端為羥基, 這一特點使它與大多數(shù)寡核苷酸和功能RNA 的降解片段區(qū)別開來;(3)具有高度保守性、時序性和組織特異性。 序列(特別是種子序列)高度同源的miRNA被歸為一個miRNA家族,但這些miRNA并不一定是成簇表達的。例如miR-34 家族3個成員miR-34a、b、c,其中,miR-34a位于1號染色體1p36基因座位,單獨表達;而miR-34b和-34c位于11號染色體11q23基因座位,成簇表達(圖1),但它們都具有相同的種子序列(圖1),并且都受到轉(zhuǎn)錄因子TP53的調(diào)控。同一miRNA家族成員功能近似(但靶基因并非完全相同)。 ? 圖1 miRNA-34 family成員 (from Hermeking H? Cell Death Differ.? 2010,17(2) 193-9)? miRNA的表達為轉(zhuǎn)錄因子調(diào)控,其表達具有時空特異性和組織特異性。調(diào)控特定的生理過程。例如,腫瘤相關(guān)基因TP53和Myc分別調(diào)控促進凋亡的miRNA(例如miR34a,最近報道該miRNA亦靶向調(diào)控腫瘤干細胞biomarker CD44表達,)或抑制凋亡的miRNA(例如miR-21,該miRNA在多種腫瘤細胞中高表達),后者通過調(diào)控相應(yīng)的靶mRNA,最終促進或抑制細胞凋亡(圖2)。 和編碼蛋白的mRNA相同,miRNA基因上游同樣有啟動子,啟動子區(qū)的CpG導(dǎo)發(fā)生甲基化,也會影響下游基因表達。在一些腫瘤細胞(例如淋巴瘤)中,miR-34a上游CpG島發(fā)生甲基化導(dǎo)致miR-34a表達水平降低;而在另一些腫瘤細胞(如胰腺癌)中,TP53突變產(chǎn)生同樣結(jié)果,顯示了miRNA表達調(diào)控的多層次。另外,基因缺失,重排等,以及環(huán)境因素,例如缺氧等,都會影響miRNA的表達。 圖2 轉(zhuǎn)錄因子調(diào)節(jié)凋亡相關(guān)miRNA表達 (from Cortez MA t al Advances In Cancer Research, Vol 108) 目前,關(guān)于miRNA研究方法已經(jīng)比較成熟,通過深度測序,可以發(fā)現(xiàn)未知的miRNA,miRNA芯片則可以很好鑒定研究組和對照組的差異miRNA,進而通過實時熒光定量PCR(q-PCR)加以驗證。運用生物信息學(xué)分析以及數(shù)據(jù)挖掘,尋找miRNA可能的靶點以及靶序列,可能涉及的作用通路,之后進一步通過基因轉(zhuǎn)染、過表達或抑制目標(biāo)miRNA觀察一些表型或基因表達變化,以探討發(fā)現(xiàn)miRNA的作用機制?;蜓芯縨iRNA與疾病的相關(guān)性,發(fā)展基于miRNA的診斷、疾病分型、預(yù)后判斷、藥效檢測和治療,都是目前miRNA研究的重要內(nèi)容。從2000年至今,關(guān)于miRNA的文獻已經(jīng)超過10000篇,并且隨著miRNA研究的不斷深入,這個數(shù)字還在加速遞增。 歐易生物追蹤當(dāng)前研究熱點,發(fā)展了包括miRNA研究(芯片、深度測序、q-PCR)在內(nèi)的,從基因組、轉(zhuǎn)錄組、表觀遺傳學(xué)到蛋白的完善技術(shù)服務(wù)體系,助力您的科學(xué)研究。 更多詳情請關(guān)注 http://www.oebiotech.com
編輯:
莉莉
版權(quán)聲明
本網(wǎng)站所有注明“來源:丁香園”的文字、圖片和音視頻資料,版權(quán)均屬于丁香園所有,非經(jīng)授權(quán),任何媒體、網(wǎng)站或個人不得轉(zhuǎn)載,授權(quán)轉(zhuǎn)載時須注明“來源:丁香園”。本網(wǎng)所有轉(zhuǎn)載文章系出于傳遞更多信息之目的,且明確注明來源和作者,不希望被轉(zhuǎn)載的媒體或個人可與我們聯(lián)系,我們將立即進行刪除處理。同時轉(zhuǎn)載內(nèi)容不代表本站立場。
更多 >
胰腺癌相關(guān)文章
os
胰腸吻合技術(shù)要點,5 種方式都在這里了
os
2019AACR 癌癥早篩新技術(shù)革新而臨——5hmC(胰腺癌診斷標(biāo)志物)高通量檢測技術(shù)帶來胰腺癌早篩新方向
os
要點學(xué)習(xí):保留中段的胰腺切除術(shù)
更多 >
淋巴瘤相關(guān)文章
os
【課程上線】第11 屆泛太湖白血病/淋巴瘤流式及遺傳學(xué)進展與標(biāo)準化協(xié)作組研討會
os
西雅圖遺傳旗下淋巴瘤新藥 Adcetris 獲得 FDA 優(yōu)先審查資格
os
CD5+彌漫性大B細胞淋巴瘤患者不良預(yù)后暫無法改善
近期熱門文章
os
為何色斑反反復(fù)復(fù)復(fù)?可能是因為這個原因
os
都去吃!平價地道的海南美食一次性吃到爽
os
那些最會喝水的人,一定都有的神器
os
os
os
os
os
關(guān)注頻道微信
縱覽臨床新進展
第一時間發(fā)布臨床醫(yī)學(xué)最新進展、指南共識、病例討論、會議報道等信息。
關(guān)注頻道微博
快速獲悉最新信息
App下載
下載醫(yī)學(xué)時間
每天10分鐘成學(xué)霸
X
關(guān)注我們
手機掃一掃
關(guān)注丁香園微信號
丁香園旗下網(wǎng)站
丁香園
用藥助手
丁香醫(yī)生
丁香通
文獻求助
Insight數(shù)據(jù)庫
丁香人才
丁香導(dǎo)航
合作案例
丁香會議
丁香無線
丁當(dāng)商城
調(diào)查派
丁香搜索
丁香云管家
丁香播咖
智能皮膚
醫(yī)院匯
關(guān)于丁香園
關(guān)于我們
友情鏈接
聯(lián)系我們
加入丁香園
網(wǎng)站聲明
資料下載
資格證書
官方鏈接
丁香醫(yī)生
丁香園新浪微博
An overview of microRNAs: Biology, functions, therapeutics, and analysis methods - PubMed
This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Clipboard, Search History, and several other advanced features are temporarily unavailable.
Skip to main page content
An official website of the United States government
Here's how you know
The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The site is secure.
The https:// ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
Log in
Show account info
Close
Account
Logged in as:
username
Dashboard
Publications
Account settings
Log out
Access keys
NCBI Homepage
MyNCBI Homepage
Main Content
Main Navigation
Search:
Search
Advanced
Clipboard
User Guide
Save
Send to
Clipboard
My BibliographyCollectionsCitation manager
Display options
Display options
Format
Abstract
PubMed
PMID
Save citation to file
Format:
Summary (text)
PubMed
PMID
Abstract (text)
CSV
Create file
Cancel
Email citation
Subject:
1 selected item: 30471116 - PubMed
To:
From:
Format:
Summary
Summary (text)
Abstract
Abstract (text)
MeSH and other data
Send email
Cancel
Add to Collections
Create a new collection
Add to an existing collection
Name your collection:
Name must be less than 100 characters
Choose a collection:
Unable to load your collection due to an error
Please try again
Add
Cancel
Add to My Bibliography
My Bibliography
Unable to load your delegates due to an error
Please try again
Add
Cancel
Your saved search
Name of saved search:
Search terms:
Test search terms
Would you like email updates of new search results?
Saved Search Alert Radio Buttons
Yes
No
Email:
(change)
Frequency:
Monthly
Weekly
Daily
Which day?
The first Sunday
The first Monday
The first Tuesday
The first Wednesday
The first Thursday
The first Friday
The first Saturday
The first day
The first weekday
Which day?
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Report format:
Summary
Summary (text)
Abstract
Abstract (text)
PubMed
Send at most:
1 item
5 items
10 items
20 items
50 items
100 items
200 items
Send even when there aren't any new results
Optional text in email:
Save
Cancel
Create a file for external citation management software
Create file
Cancel
Your RSS Feed
Name of RSS Feed:
Number of items displayed:
5
10
15
20
50
100
Create RSS
Cancel
RSS Link
Copy
Full text links
Wiley
Full text links
ActionsCiteCollectionsAdd to CollectionsCreate a new collectionAdd to an existing collection
Name your collection:
Name must be less than 100 characters
Choose a collection:
Unable to load your collection due to an errorPlease try again
Add
Cancel
Display options
Display options
Format
AbstractPubMedPMID
Share
Permalink
Copy
Page navigation
Title & authors
Abstract
Similar articles
Cited by
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Title & authors
Abstract
Similar articles
Cited by
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Review
J Cell Physiol
Actions
Search in PubMed
Search in NLM Catalog
Add to Search
. 2019 May;234(5):5451-5465.
doi: 10.1002/jcp.27486.
Epub 2018 Nov 23.
An overview of microRNAs: Biology, functions, therapeutics, and analysis methods
Kioomars Saliminejad?
1
,?Hamid Reza Khorram Khorshid?
2
,?Shahrzad Soleymani Fard?
1
,?Seyed Hamidollah Ghaffari?
1
Affiliations
Expand
Affiliations
1 Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
2 Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
PMID:
30471116
DOI:
10.1002/jcp.27486
Item in Clipboard
Review
An overview of microRNAs: Biology, functions, therapeutics, and analysis methods
Kioomars Saliminejad?et al.
J Cell Physiol.
2019 May.
Show details
Display options
Display options
Format
Abstract
PubMed
PMID
J Cell Physiol
Actions
Search in PubMed
Search in NLM Catalog
Add to Search
. 2019 May;234(5):5451-5465.
doi: 10.1002/jcp.27486.
Epub 2018 Nov 23.
Authors
Kioomars Saliminejad?
1
,?Hamid Reza Khorram Khorshid?
2
,?Shahrzad Soleymani Fard?
1
,?Seyed Hamidollah Ghaffari?
1
Affiliations
1 Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
2 Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
PMID:
30471116
DOI:
10.1002/jcp.27486
Item in Clipboard
Full text links
CiteDisplay options
Display options
Format
AbstractPubMedPMID
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs, which function in posttranscriptional regulation of gene expression. They are powerful regulators of various cellular activities including cell growth, differentiation, development, and apoptosis. They have been linked to many diseases, and currently miRNA-mediated clinical trial has shown promising results for treatment of cancer and viral infection. This review provides an overview and update on miRNAs biogenesis, regulation of miRNAs expression, their biological functions, and role of miRNAs in epigenetics and cell-cell communication. In addition, alteration of miRNAs following exercise, their association with diseases, and therapeutic potential will be explained. Finally, miRNA bioinformatics tools and conventional methods for miRNA detection and quantification will be discussed.
Keywords:
epigenetics; gene expression; intercellular communication; microRNA; therapeutics.
? 2018 Wiley Periodicals, Inc.
PubMed Disclaimer
Similar articles
Recent trends in targeting miRNAs for cancer therapy.
Shah V, Shah J.
Shah V, et al.
J Pharm Pharmacol. 2020 Dec;72(12):1732-1749. doi: 10.1111/jphp.13351. Epub 2020 Aug 12.
J Pharm Pharmacol. 2020.
PMID: 32783235
Review.
miRNA and cancer; computational and experimental approaches.
Tutar Y.
Tutar Y.
Curr Pharm Biotechnol. 2014;15(5):429. doi: 10.2174/138920101505140828161335.
Curr Pharm Biotechnol. 2014.
PMID: 25189575
MicroRNA: Promising Roles in Cancer Therapy.
Hashemi A, Gorji-Bahri G.
Hashemi A, et al.
Curr Pharm Biotechnol. 2020;21(12):1186-1203. doi: 10.2174/1389201021666200420101613.
Curr Pharm Biotechnol. 2020.
PMID: 32310047
Review.
A Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and Hematologic Disease.
Weiss CN, Ito K.
Weiss CN, et al.
Int Rev Cell Mol Biol. 2017;334:99-175. doi: 10.1016/bs.ircmb.2017.03.007. Epub 2017 Apr 21.
Int Rev Cell Mol Biol. 2017.
PMID: 28838543
Free PMC article.
Review.
The Emerging Role of MitomiRs in the Pathophysiology of Human Disease.
Duarte FV, Palmeira CM, Rolo AP.
Duarte FV, et al.
Adv Exp Med Biol. 2015;888:123-54. doi: 10.1007/978-3-319-22671-2_8.
Adv Exp Med Biol. 2015.
PMID: 26663182
See all similar articles
Cited by
MiR206 and 423-3p Are Differently Modulated in Fast and Slow-Progressing Amyotrophic Lateral Sclerosis Patients.
Musarò A, Dobrowolny G, Cambieri C, Libonati L, Moret F, Casola I, Laurenzi G, Garibaldi M, Inghilleri M, Ceccanti M.
Musarò A, et al.
Neuromolecular Med. 2024 Mar 15;26(1):5. doi: 10.1007/s12017-024-08773-6.
Neuromolecular Med. 2024.
PMID: 38491246
miR-335-3p improves type II diabetes mellitus by IGF-1 regulating macrophage polarization.
Ju Z, Cui F, Mao Z, Li Z, Yi X, Zhou J, Cao J, Li X, Qian Z.
Ju Z, et al.
Open Med (Wars). 2024 Feb 29;19(1):20240912. doi: 10.1515/med-2024-0912. eCollection 2024.
Open Med (Wars). 2024.
PMID: 38463527
Free PMC article.
Catalytic Assembly of DNAzyme Integrates with Primer Exchange Reaction (CDiPER) for Highly Sensitive Detection of MicroRNA.
Zhang K, Li Y, Jiang S, Ju S.
Zhang K, et al.
ACS Omega. 2024 Feb 23;9(9):10897-10903. doi: 10.1021/acsomega.3c10003. eCollection 2024 Mar 5.
ACS Omega. 2024.
PMID: 38463245
Free PMC article.
Regulatory RNAs in immunosenescence.
Talepoor AG, Doroudchi M.
Talepoor AG, et al.
Immun Inflamm Dis. 2024 Mar;12(3):e1209. doi: 10.1002/iid3.1209.
Immun Inflamm Dis. 2024.
PMID: 38456619
Free PMC article.
Review.
Dysregulation and antimetastatic function of circLRIG1 modulated by miR-214-3p/LRIG1 axis in bladder carcinoma.
Cheng S, Li C, Liu L, Liu X, Li M, Zhuo J, Wang J, Zheng W, Wang Z.
Cheng S, et al.
Biol Direct. 2024 Mar 7;19(1):20. doi: 10.1186/s13062-023-00446-x.
Biol Direct. 2024.
PMID: 38454507
Free PMC article.
See all "Cited by" articles
Publication types
Review
Actions
Search in PubMed
Search in MeSH
Add to Search
MeSH terms
Animals
Actions
Search in PubMed
Search in MeSH
Add to Search
Cell Communication
Actions
Search in PubMed
Search in MeSH
Add to Search
Computational Biology
Actions
Search in PubMed
Search in MeSH
Add to Search
Epigenesis, Genetic
Actions
Search in PubMed
Search in MeSH
Add to Search
Exercise
Actions
Search in PubMed
Search in MeSH
Add to Search
Gene Expression Regulation
Actions
Search in PubMed
Search in MeSH
Add to Search
High-Throughput Nucleotide Sequencing
Actions
Search in PubMed
Search in MeSH
Add to Search
Humans
Actions
Search in PubMed
Search in MeSH
Add to Search
MicroRNAs* / genetics
Actions
Search in PubMed
Search in MeSH
Add to Search
MicroRNAs* / metabolism
Actions
Search in PubMed
Search in MeSH
Add to Search
MicroRNAs* / therapeutic use
Actions
Search in PubMed
Search in MeSH
Add to Search
Neoplasms / genetics
Actions
Search in PubMed
Search in MeSH
Add to Search
Neoplasms / metabolism
Actions
Search in PubMed
Search in MeSH
Add to Search
Neoplasms / therapy
Actions
Search in PubMed
Search in MeSH
Add to Search
Signal Transduction
Actions
Search in PubMed
Search in MeSH
Add to Search
Substances
MicroRNAs
Actions
Search in PubMed
Search in MeSH
Add to Search
Related information
MedGen
LinkOut - more resources
Full Text Sources
Wiley
Full text links
[x]
Wiley
[x]
Cite
Copy
Download .nbib
.nbib
Format:
AMA
APA
MLA
NLM
Send To
Clipboard
Save
My Bibliography
Collections
Citation Manager
[x]
NCBI Literature Resources
MeSH
PMC
Bookshelf
Disclaimer
The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.
Follow NCBI
GitHub
Connect with NLM
SM-Facebook
SM-Youtube
National Library of Medicine
8600 Rockville Pike
Bethesda, MD 20894
Web Policies
FOIA
HHS Vulnerability Disclosure
Help
Accessibility
Careers
NLM
NIH
HHS
USA.gov
miRNAs - Latest research and news | Nature
Skip to main content
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Advertisement
View all journals
Search
Log in
nature
subjects
mirnas
miRNAs articles from across Nature Portfolio
Atom
RSS Feed
Definition
micro RNAs (miRNAs) are a type of non-coding RNA (ncRNA), ~21?24 nucleotides in length, that function in the post-transcriptional regulation of gene expression. Typically miRNAs interact with specific mRNAs through complementary base-pairing to influence the translation or stability of the target mRNA molecule.
Latest Research and Reviews
MicroRNA-221-3p inhibits the inflammatory response of keratinocytes by regulating the DYRK1A/STAT3 signaling pathway to promote wound healing in diabetes
The microRNA miR-221-3p inhibits the inflammatory response and promotes skin wound healing in diabetes by targeting DYRK1A expression, thereby regulating the DYRK1A/STAT3 signaling pathway.
Keyan HuLei LiuQiu Zhang
ResearchOpen Access09 Mar 2024
Communications Biology
Volume: 7, P: 300
LncRNA-SNHG5 mediates activation of hepatic stellate cells by regulating NF2 and Hippo pathway
LncRNA SNHG5 can regulate the Hippo pathway and EMT process by interacting with NF2 to mediate the activation of hepatic stellate cells.
Rongrong ZhangYating ZhanJianjian Zheng
ResearchOpen Access04 Mar 2024
Communications Biology
Volume: 7, P: 266
An essential role for the RNA helicase DDX6 in NMDA receptor-dependent gene silencing and dendritic spine shrinkage
Fathima M. PerooliKevin A. WilkinsonJonathan G. Hanley
ResearchOpen Access06 Feb 2024
Scientific Reports
Volume: 14, P: 3066
Tissue-specific profiling of age-dependent miRNAomic changes in Caenorhabditis elegans
Wang et al. profile age-dependent miRNAomic changes in worm tissues and extracellular vesicles (EVs). They show that ageing controls miRNAs in a tissue-specific manner and their findings further suggest a complex EV-mediated miRNA trafficking network across tissues.
Xueqing WangQuanlong JiangYidong Shen
ResearchOpen Access01 Feb 2024
Nature Communications
Volume: 15, P: 955
Circular RNA cVIM promotes hepatic stellate cell activation in liver fibrosis via miR-122-5p/miR-9-5p-mediated TGF-β signaling cascade
The circRNA cVIM may act as a sponge for miR-122-5p and miR-9-5p to enhance expression of TGFBR1 and TGFBR2 and promote activation of the TGF-β/Smad pathway, thereby accelerating the progression of liver fibrosis.
Zhenxu ZhouRongrong ZhangJianjian Zheng
ResearchOpen Access19 Jan 2024
Communications Biology
Volume: 7, P: 113
Screening and validation of optimal miRNA reference genes in different developing stages and tissues of Lilium henryi Baker
Ge JinXiuhai ZhangMingfang Zhang
ResearchOpen Access17 Jan 2024
Scientific Reports
Volume: 14, P: 1545
All Research & Reviews
News and Comment
A catalytic function for mammalian Argonautes
Joana Vidigal reminds us of the first paper to report an endogenous role of the nucleolytic activity of the mammalian RNAi protein argonaute-2.
Joana A. Vidigal
Research Highlights14 Feb 2024
Nature Reviews Molecular Cell Biology
P: 1
o8G modifications rewire tumoral microRNAs
RNA modifications have emerged as key gene regulators. A new study shows that increased levels of reactive oxygen species in cancer induce widespread, sequence-specific modifications of guanines in the seed regions of microRNAs, altering the targets of those miRNAs and influencing tumorigenesis.
Marta MontesMaite Huarte
News & Views07 Sept 2023
Nature Cell Biology
Volume: 25, P: 1243-1244
microRNAs as systemic regulators of ageing
Wagner et al. report an organism-wide map of non-coding RNA expression in ageing and rejuvenated mice, identifying a set of broadly deregulated microRNAs that may act as systemic regulators of ageing.
Linda Koch
Research Highlights10 May 2023
Nature Reviews Genetics
Volume: 24, P: 415
First demonstration of miRNA-dependent mRNA decay
Marina Chekulaeva describes the experiments that showed that microRNAs cause degradation of their target mRNAs.
Marina Chekulaeva
Research Highlights14 Nov 2022
Nature Reviews Molecular Cell Biology
Volume: 24, P: 164
Target-directed microRNA degradation in Drosophila
A report in Molecular Cell identifies six new triggers of target-directed miRNA degradation, which are essential for normal Drosophila melanogaster embryogenesis.
Dorothy Clyde
Research Highlights07 Oct 2022
Nature Reviews Genetics
Volume: 23, P: 713
microRNAs in aged sperm confer psychiatric symptoms to offspring through causing the dysfunction of estradiol signaling in early embryos
Gaoli LiangXiaoju ZhuXi Chen
CorrespondenceOpen Access05 Jul 2022
Cell Discovery
Volume: 8, P: 63
All News & Comment
Search
Search articles by subject, keyword or author
Show results from
All journals
Search
Advanced search
Quick links
Explore articles by subject
Find a job
Guide to authors
Editorial policies
Nature.com
nature.com sitemap
About Nature Portfolio
About us
Press releases
Press office
Contact us
Discover content
Journals A-Z
Articles by subject
Protocol Exchange
Nature Index
Publishing policies
Nature portfolio policies
Open access
Author & Researcher services
Reprints & permissions
Research data
Language editing
Scientific editing
Nature Masterclasses
Research Solutions
Libraries & institutions
Librarian service & tools
Librarian portal
Open research
Recommend to library
Advertising & partnerships
Advertising
Partnerships & Services
Media kits
Branded
content
Professional development
Nature Careers
Nature
Conferences
Regional websites
Nature Africa
Nature China
Nature India
Nature Italy
Nature Japan
Nature Korea
Nature Middle East
Privacy
Policy
Use
of cookies
Your privacy choices/Manage cookies
Legal
notice
Accessibility
statement
Terms & Conditions
Your US state privacy rights
? 2024 Springer Nature Limited